Monday, March 14, 2011
Keep It In Perspective
With the unfolding disasters in Japan, the anti-nuclear power voices are a-rising. I think it is important to keep in mind a couple of things. First, from Scientific American: Fly ash from coal powered plants can be radioactive.
Over the past few decades, however, a series of studies has called these stereotypes into question. Among the surprising conclusions: the waste produced by coal plants is actually more radioactive than that generated by their nuclear counterparts. In fact, the fly ash emitted by a power plant—a by-product from burning coal for electricity—carries into the surrounding environment 100 times more radiation than a nuclear power plant producing the same amount of energy...
...estimated radiation doses ingested by people living near the coal plants were equal to or higher than doses for people living around the nuclear facilities. At one extreme, the scientists estimated fly ash radiation in individuals' bones at around 18 millirems (thousandths of a rem, a unit for measuring doses of ionizing radiation) a year. Doses for the two nuclear plants, by contrast, ranged from between three and six millirems for the same period. And when all food was grown in the area, radiation doses were 50 to 200 percent higher around the coal plants.
Keep in mind the chance of harmful radioactive contamination from either source, fly ash or nuclear fuel, is remarkably low. From further in:
The chances of experiencing adverse health effects from radiation are slim for both nuclear and coal-fired power plants—they're just somewhat higher for the coal ones. "You're talking about one chance in a billion for nuclear power plants," Christensen says. "And it's one in 10 million to one in a hundred million for coal plants."
And then there's this:
Energy Source Death Rate (deaths per TWh)
Coal – world average 161 (26% of world energy, 50% of electricity)
Coal – China 278
Coal – USA 15
Oil 36 (36% of world energy)
Natural Gas 4 (21% of world energy)
Biofuel/Biomass 12
Peat 12
Solar (rooftop) 0.44 (less than 0.1% of world energy)
Wind 0.15 (less than 1% of world energy)
Hydro 0.10 (europe death rate, 2.2% of world energy)
Hydro - world including Banqiao) 1.4 (about 2500 TWh/yr and 171,000 Banqiao dead)
Nuclear 0.04 (5.9% of world energy)
Bottom line, what we are really learning from Japan is that building nuclear power plants in active seismic zones probably isn't a very good idea, unless they're build really, really, really well. I'll add that I'm less worried about the effects of radiation contained in fly ash, than I am with the widespread and well-known adverse health effects from stack emissions and the more likely case of ash impoundment failure versus the more remote chance of radiation "leakage" from deep waste storage of spent nuclear fuel. Never mind the enviromental impact of acid mine runoff, mountaintop removal, and the inherent danger to miners in extracting coal.
Over the past few decades, however, a series of studies has called these stereotypes into question. Among the surprising conclusions: the waste produced by coal plants is actually more radioactive than that generated by their nuclear counterparts. In fact, the fly ash emitted by a power plant—a by-product from burning coal for electricity—carries into the surrounding environment 100 times more radiation than a nuclear power plant producing the same amount of energy...
...estimated radiation doses ingested by people living near the coal plants were equal to or higher than doses for people living around the nuclear facilities. At one extreme, the scientists estimated fly ash radiation in individuals' bones at around 18 millirems (thousandths of a rem, a unit for measuring doses of ionizing radiation) a year. Doses for the two nuclear plants, by contrast, ranged from between three and six millirems for the same period. And when all food was grown in the area, radiation doses were 50 to 200 percent higher around the coal plants.
Keep in mind the chance of harmful radioactive contamination from either source, fly ash or nuclear fuel, is remarkably low. From further in:
The chances of experiencing adverse health effects from radiation are slim for both nuclear and coal-fired power plants—they're just somewhat higher for the coal ones. "You're talking about one chance in a billion for nuclear power plants," Christensen says. "And it's one in 10 million to one in a hundred million for coal plants."
And then there's this:
Energy Source Death Rate (deaths per TWh)
Coal – world average 161 (26% of world energy, 50% of electricity)
Coal – China 278
Coal – USA 15
Oil 36 (36% of world energy)
Natural Gas 4 (21% of world energy)
Biofuel/Biomass 12
Peat 12
Solar (rooftop) 0.44 (less than 0.1% of world energy)
Wind 0.15 (less than 1% of world energy)
Hydro 0.10 (europe death rate, 2.2% of world energy)
Hydro - world including Banqiao) 1.4 (about 2500 TWh/yr and 171,000 Banqiao dead)
Nuclear 0.04 (5.9% of world energy)
Bottom line, what we are really learning from Japan is that building nuclear power plants in active seismic zones probably isn't a very good idea, unless they're build really, really, really well. I'll add that I'm less worried about the effects of radiation contained in fly ash, than I am with the widespread and well-known adverse health effects from stack emissions and the more likely case of ash impoundment failure versus the more remote chance of radiation "leakage" from deep waste storage of spent nuclear fuel. Never mind the enviromental impact of acid mine runoff, mountaintop removal, and the inherent danger to miners in extracting coal.